Integrating Fast Tracking into Clinical Care and Financial Impact

Robert J McKenna Jr. MD Head, Thoracic Surgery St John's Health Center Professor and Chairman, John Wayne Cancer Institute

#### **Presenter Disclosure Rob McKenna**

The following relationships exist related to this presentation:
Ethicon: Consultant, Speakers Bureau
Covidien: Speakers Bureau

### As medical student

 Internal med rotation, given a symptom, given a patient's symptom. Told to: **–List 10 possible diagnoses** -List 10 tests to rule out each diagnosis **-ORDER THEM ALL???** 

#### **Fast-tracking after Lobectomy**

- Era of Cost Containment and Pay for Performance
- Need to track our results and develop protocols to reduce costs and improve performance



#### **Goals for this talk**

- Evidence based medicine
- Cultural Change to Integrate into clinical Care
- Impact of Fast Tracking
- Financial Impact of Change



### Patient Care Pathway Mass General

|      | Baseline | Pathway  | P value                |
|------|----------|----------|------------------------|
| LOS  | 10.6     | 7.7      | <b>p</b> = <b>0.03</b> |
| Cost | \$16,063 | \$14,792 | <b>p</b> = <b>0.47</b> |

Wright

#### Fast Tracking





## **Integration of Evidence Based Medicine into Thoracic Surgery**



#### Fast Tracking





# • ? Routine use of CXR ?



#### Postop CXR after Thoracic Surgery

 769 CXRs after 100 thoracotomies (ave + 7.69 per patient!!)

 Only 43 of 769 CXRs (5.6%) changed clinical management of the patient

#### Graham

#### Postop CXR after Thoracic Surgery

#### Indication for CXR vs change in clinical management: •Routine CXR 33 (4.5%) •Non-routine CXR 10 (26.3%)

Graham

Postop CXR after Thoracic Surgery 100 thoracotomies

#### **Conclusions:**

Routine daily portable chest x-ray studies have a minimal impact on management

#### Graham

© 2004 Elsevier B.V.

Postop CXR after Thoracic Surgery 100 thoracotomies

### **Conclusions**:

**Elimination of 636 (82.7%)** of 769 CXRs reduced the cost of care by \$725 per patient (\$286,000 Elsevannually) r a h a

CXR after Chest Tube Removal 151 patients after CABG

 Normal
 148 (98.7%)

 Pneumothorax
 3 (1.3.%)

 (2 of 3 symptomatic)

#### Tanveer

© 2004 Elsevier B.V.

CXR after Chest Tube Removal 151 patients after CABG

- Very low incidence of pneumothorax after CT removal.
- Symptoms almost always identify patients requiring intervention.





- No routine postoperative **xrays**  No routine CXR in recovery room
- No CXR after removing chest tube



#### Fast-tracking Protocol

• Remove chest tube when: -No air leak -Output < 400 ml day Discharge with Heimlich valve if persistent air leak and low output



#### **Fast-tracking**

No routine postoperative labs

**Protocol** 

McKenna Ann Thor Surg 2007

- Order Labs/ xrays only when clinically indicated:
  Atrial fibrillation:
  get K and Mag
  - -Fever/ Dyspnea:
    - get chest xray, CBC

No.

#### Fast-tracking **Results**



• 282 patients -158 women (56%) -124 men (44%)• Mean age 71.2 years -Range 46-95 years



#### Fast-tracking Results



• Mean LOS = 2.76 days • Median LOS = 2 days 46% discharged on POD **1 or 2** 

• Mortality = 1 (0.4%)



### **Fast-tracking**



- None
- Air Leak
- **AF**
- Pneumonia
- Atelectasis
- Urinary Ret
- CVA/TIA
- Readmit









### • Blood transform = 11(3.9%)

#### • Readmission = 2(0.7%)

### **-TIA** -SQ emphysema



#### Fast-tracking Conclusions

 Fast-tracking Protocols may shorten length of stay without compromising morbidity and mortality Cultural Change is needed



## FastCultural ChangeTracking

 No routine ICU after lobectomy • No routine labs or **xrays after lobectomy** 



## FastCultural ChangeTracking

- Obtain CXR only for clinical indications after lobectomy.
- No daily CXR
- No CXR after chest tube removal







## Fast tracking • STS database Analyze your results to identify outliers



#### **Prolonged air leaks**

#### **Impact of Prolonged air Leaks (PAL)**



#### **Prolonged air leaks**

 Hospital Costs: \$59,713 -PALs -No PAL \$44,077, p≤0.0001) Incremental economic burden of ~\$15,000 per patient to the **US healthcare system** wan

## Risk of nosocomial respiratory infections and pulmonary atelectasis.

|                   | Complications |
|-------------------|---------------|
| No PAL<br>(n=215) | 19 (8.8%)     |
| PAL (n=23)        | 5 (21.7%)     |

#### Prolonged air leak odds ratio; odds ratio: 2.85 (95% CI: 0.96-8.58)

Varela G et al. Eur J Cardiothorac Surg 2005;27:329-333

EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY

© 2004 Elsevier B.V.

Economic Burden of Prolonged air leak (PAL)

- US national payor database study
- PAL > 5 days
- 27,366 patient records



#### Economic Burden of Prolonged Air Leaks

• Open versus VATS MarketScan and Medicare database **10,585** lobectomies 2,100 segmentectomies

Swanson Chest 2014

#### Economic Burden of Prolonged air leak (PAL)

• open procedures are 40% (95% CI: 26% to 55%; p<0.0001) more likely to result in a PAL than VATS procedures

#### Swanson

Economic Burden of Prolonged air leak (PAL)

 Significantly longer LOS -Open 12.2 days **11.4 days p=0.0067**) -VATS more likely to get readmitted within 30 days.

#### Swanson

#### **Prolonged air leaks**

|                         | Open     | VATS     | <b>P value</b> |
|-------------------------|----------|----------|----------------|
| PAL<br>incidence        | 13%      | 9%;      | p<0.0001       |
| Hospital<br>cost if PAL | \$39,141 | \$35,265 | p<0.0001       |

Swanso



#### **Prolonged air leaks**

**Treatment of Prolonged air Leaks** 



## Economic Burden of Prolonged air leak (PAL)

- 107 patients after LVRS
  Discharge with Heimlich Valve
- Outpatient chest tube days total days with chest tube McKenna, Ann Thor Surg 1996

## Economic Burden of Prolonged air leak (PAL)



40% reduction in LOS till chest tube out
Economic Burden of Prolonged air leak (PAL)

- 20 patients prolonged air leak
- Discharge portable chest drainage saved 772 beddays and 270,000 GBP

Southey, Int Card Thor Surg 2015

## Chest drainage system



Digital read out for air leak and volume drainage

# Digital Chest drainage system: CT days

| Author             | Digital  | Traditional |
|--------------------|----------|-------------|
| Cerfolio (2008)    | 3 days   | 4.4 days    |
| <b>Meir (2010)</b> | 2.4 days | 4.5 days    |
| Pompili (2014)     | 3.6 days | 4.7 days    |
| Miller (2015)      | 3.6 days | 5.3 days    |

# Digital Chest drainage system: LOS

| Author             | Digital  | Traditional     |
|--------------------|----------|-----------------|
| Cerfolio (2008)    | 3.9 days | 4.6 days        |
| <b>Meir (2010)</b> | N/A      | N/A             |
| Pompili (2014)     | 4.6 days | 5.6 days        |
| Miller (2015)      | 4.1 days | <b>5.9 days</b> |

## **Prolonged air leaks**

## **Prevention of Prolonged air Leaks**



# Randomized study of lung sealant

3M Surgical Sealant Study Group -161 patients randomized 2:1 -Biodegradable sealant

Allen, Ann Thor Surg 2004

# Randomized study of lung sealant

|               | control    | sealant    |
|---------------|------------|------------|
| Intra-op leak | <b>77%</b> | 16%        |
| Post-op leak  | 86%        | <b>65%</b> |
| Median LOS    | 7 days     | 6 days     |

Allen, Ann Thor Surg 2004

Pulmonary Sealants after Lung Cancer Surgery- Meta-analysis

- Randomized, controlled trials
- Sixteen trials
- 1642 randomized patients

### Belda-Sai

Pulmonary Sealants after Lung Cancer Surgery- Meta-analysis

- 13 of 16 showed differences
- 6 of 16 showed significant differences
- 3/16 showed significant reduction in chest tube drainage

• 3 of 16 showed shorter LOS Belda-Sa

# FastCultural ChangeTracking

• If PAL occurs: -Use Heimlich valve and discharge -Use digital chest drainage system -Blood patch, pleurodesis



#### VATS Lobectomy





## **Atrial Fibrillation**



## **Risk Factors for Atrial Fibrillation**

- STS database
- 13,906 who underwent lobectomy or pneumonectomy
- 1,755 (12.6%) had postop AF

#### **Onaitis, Ann Thor Surg 2010**

## **Risk factors for Atrial Fibrillation**

- male sex
- Increasing age
- Increasing magnitude of lung or esophagus resected
- history of congestive heart failure,
- concomitant lung disease preoperative episodes of AF
- length of procedure [3–15] Onaitis, Ann Thor Surg

2010

**Consequences of Atrial Fibrillation** 

- 12% and 44% of patients after pulmonary and esophageal surgery.
- increased pulmonary complications, increased length of stay, and increased mortality [1, 2]

Onaitis, Ann Thor Surg 2010

## Impact of AF on Survival after Lobectomy



## Impact of AF on 5 year Survival after Lobectomy

| Factor        | P value | HR   | 95% CI      |
|---------------|---------|------|-------------|
| AF            | 0.007   | 3.75 | 1.44 - 9.81 |
| FEV1 <<br>80% | 0.027   | 2.07 | 1.09 - 3.93 |

Imperatori JTCS 2012

**STS Practice Guidelines for Atrial Fibrillation** 

- Class I: Beta blockers for thoracic surgery (Level of evidence B)
- Class IIa : Diltiazem for major pulmonary resection (Level of evidence B)

Onaitis, Ann Thor Surg 2010

Atrial Fibrillation: Diltiazem Prophylaxis

#### • 5 RCT:

- 50% reduction AF
  - -10.6% versus 21.5%
  - relative risk 0.50; 95% confidence interval: 0.34 to 0.73)
- Preop in recovery room
- 30 to 60 mg every 6 hours

Fernandez, STS Guidelines



 Use beta blocker or calcium channel blockers for patients with high risk for AF



# Evidence Based Nodes Dissection

## Technique for node dissection during lobectomy:

**Energy versus Cautery** 



# Lymph Node Dissection Operative Technique



#### **Blunt Dissection**



### **Energy Device**



Cautery

## Nodes: Operative Technique Emory: 350 Lobectomies

|               | Energy | Cautery |
|---------------|--------|---------|
| Node stations | 4.2    | 4.1     |
| # NODES       | 19.5   | 18      |
| CT days       | 2.9    | 4.1     |
| Pl Drainage   | 610    | 906     |
| LOS           | 3.8    | 5.3     |

### Fast Tracking

## Cultural Change

 Use Harmonic scalpel for node dissections



 Protocols appear to reduce LOS and produce savings

## Fast Tracking and Evidenced based medicine

Members of the division need to agree to cultural change

## Fast Tracking and Evidence Based Medicine

# So what....

The Changing Healthcare Environment

- More Medicaid
- No payments for readmissions or certain complications
- Value-based purchasing
- Alignments of hospitals and physicians
- Market consolidation
- Access

- Improved Quality for patients
- Public information re M and M

 Who gets Insurance Contracts? They know your cost, average #consults/ case, etc.

- Get the quality information at your hospital
- Use Society of Thoracic Surgeons Database
- Analyze the Data to Find where there is a problem and fix it

- Analyze the Data to determine if your LOS or complication rates are outliers
- Use fast tracking and evidence based medicine to fix it

 Make division more profitable: -More support resources (salaries, NPs)

# Know the codes for your procedures

How to maximize payments
Payers do all they can to reduce what they pay

You deserve to be paid

## Medicare CPT Payment for lobectomy

|                      | <b>2001</b> | <b>2010</b> | <b>2016</b>            |
|----------------------|-------------|-------------|------------------------|
| <b>VATS</b><br>32663 | \$1,515.07  | \$1,509.27  | \$1,540.71<br>(+\$24)  |
| <b>Open</b><br>32480 | \$1,478.12  | \$1,603.57  | \$1,624.85<br>(+\$124) |

## Medicare CPT Payment for lobectomy (COL)

|                      | 2001              | 2016       | 2016             |
|----------------------|-------------------|------------|------------------|
|                      |                   |            | (2001 \$)        |
| <b>VATS</b><br>32663 | \$1,515.07        | \$1,540.71 | \$1155<br>(-25%) |
| <b>Open</b><br>32480 | <b>\$1,478.12</b> | \$1,624.85 | \$1218<br>(-25%) |

Medicare CPT codes Payment for lobectomy

- Know the name of the codes for your procedures
- List them all in your operative notes for your billers
- 6 different wedge resection codes
  - XXXX wedge followed by anatomic dissection
- Know globals for the codes
   Bill hospital visits for 0 global
#### Medicare CPT codes Payment for wedge resection

| procedure        | code  | Medicare<br>payment | Location |
|------------------|-------|---------------------|----------|
| infiltrate       | 32607 | \$320.84            | 0        |
| Mass dx          | 32608 | \$390.68            | 0        |
| Tx mass          | 32666 | \$904.40            | 90       |
| Additional wedge | 32667 | \$163.65            | 90       |
| Wedge to         | 32668 | \$163.65            | 90       |

#### How hospitals get paid by Medicare

- <u>DRG</u>: diagnosis related groups (800)
- Formerly, one code for major lung resection (075)
- Now, there are 3 (163, 164, 165)

#### **Criteria for DRGs**

- Now...MS-DRG: Medicare Severity-Diagnosis Related Group
- <u>CC:</u> complicating or comorbid condition (N1 disease)
- <u>MCC:</u> major complicating or comorbid condition (e.g. MI)

#### **Major Chest Procedures**

| DRG | Сотр | <b>\$\$</b> |
|-----|------|-------------|
| 163 | MC   | \$37,901.40 |
| 164 | CC   | \$19,886.29 |
| 165 | None | \$14,172.14 |

Medicare Payment for DRG (Yale U Project)

- Definitions of Complications that affect DRGs were changed
- Yale University Project analyzed the impact of the change in definitions

#### Medicare Payment for DRG (Yale U Project)

|                 | CC              | Revised    |
|-----------------|-----------------|------------|
| # CC codes      | 3326            | 2583       |
| % pts. with CCs | 77              | 40         |
| % no CCs        | 22%             | <b>59%</b> |
| Charge w/ CCs   | <b>\$24,538</b> | \$31,451   |
| Charge no CC    | \$14,795        | \$16,215   |

Medicare Payment for DRG (Yale U Project)

- Keep track of the definitions.
- Make sure to document them
- E.g. positive nodes in CC group increase DRG (that is worth >\$5000), document in progress note

## DRGs for Thoracic Surgery

#### Document

Document

Document

## Fast Tracking and Cost Saving

# Impact of Length of stay on Profit

#### Medicare Lobectomy Profit / hospital bed

|                     | LOS =2      | LOS = 7   |
|---------------------|-------------|-----------|
| Revenue             | \$23,870    | \$23,870  |
| <b>Direct Costs</b> | \$5,838     | \$8,548   |
| <b>Gross Margin</b> | \$18,032    | \$15,322  |
| Profit/ year        | \$2,254,000 | \$776,100 |

## Fast Tracking and Cost Saving

## Work with administrators

## VATS Lobectomy cost analysis

Surgery is the engine that drives hospital
75% hospital profit from surgical services

#### **Profit of Surg Specialties**

(Resnick: Ann Surg , 2005)

| <b>Specialty</b> | Margin/ RVU | Margin/ OR hr |
|------------------|-------------|---------------|
| Thoracic         | 34.55       | 233.94        |
| Transplant       | 25.13       | 275.74        |
| Trauma           | 19.42       | 127.26        |
| Cardiac          | 16.20       | 112.95        |
| Vascular         | 15.21       | 15.21         |
| Orthopedics      | 9.01        | 59.63         |
| Gynecology       | 1.66        | 12.12         |
| Plastics         | (0.57)      | (3.83)        |

## Medicare 2 midnight Rule

- Outpatient care is less expensive
- Medicare is promoting out patient and minimally invasive surgery (MIS)

## Medicare 2 midnight Rule

 Hysterectomy:
 –Outpt, MIS pays \$3000 more than inpt open

• Hernia:

-Open pays less than cost -MIS pays \$3000 more

## Medicare 2 midnight Rule

 Currently, all major thoracic operations are inpatient only **Fast-tracking: Conslusion** 

- Fast Tracking is good for patients
- Reduces cost of health care



**Fast-tracking: Conslusion** 

 Surgeons must understand all these issues

 Surgeons work with hospitals re this



## VATS Lobectomy cost analysis

Surgery is the engine that drives hospital
75% hospital profit from surgical services

#### **Profit of Surg Specialties**

(Resnick: Ann Surg , 2005)

| <b>Specialty</b> | Margin/ RVU | Margin/ OR hr |
|------------------|-------------|---------------|
| Thoracic         | 34.55       | 233.94        |
| Transplant       | 25.13       | 275.74        |
| Trauma           | 19.42       | 127.26        |
| Cardiac          | 16.20       | 112.95        |
| Vascular         | 15.21       | 15.21         |
| Orthopedics      | 9.01        | 59.63         |
| Gynecology       | 1.66        | 12.12         |
| Plastics         | (0.57)      | (3.83)        |

## Fast Tracking and Cost Saving

We are in the era of large database analysis, not randomized, prospective studies

## VATS Lobectomy versus open lobectomy

Premier Database
 -600 US hospitals
 -20% of all hospital admissions in US

-Compare hospital costs and clinical outcomes Swanson JTCVS, 2012

## VATS Lobectomy versus open lobectomy

 Multi-hospital Database showed VATS, compared to thoracotomy, had lower:

**JTCVS**, 2012

Swanson

- -LOS
- -Cost
- -Re-admission rates

## VATS Lobectomy versus open lobectomy

- Less Costs
- Earlier recovery
- Less impact on immune system
- Earlier start for adjuvant chemotherapy



- In US, 40% of lobectomies are done by VATS
- Can be 90%
- Increase Use of VATS lobectomy



## VATS vs Robot

#### **Prospect Data Base: 20% hospitalizations in US**

| Category | Robot | VATS  |
|----------|-------|-------|
| Patients | 335   | 3818  |
| Female   | 52.5% | 54.7% |

## VATS vs Robot hospital course

| Category           | Robot    | VATS     | P value |
|--------------------|----------|----------|---------|
| Mean LOS<br>(days) | 6.07     | 5.83     | 0.6131  |
| Hospital<br>costs  | \$25,040 | \$20,476 | <.0001  |
| Procedure<br>time  | 4.49 h   | 4.23 h   | 0.0959  |

## VATS vs Robot complications

| Category  | Robot | VATS  | P value |
|-----------|-------|-------|---------|
| Major     | 16.95 | 18.98 | NS      |
| Pneumonia | 8.47  | 9.83  | NS      |
| BPF       | 1.69  | 1.02  | NS      |

## VATS vs Robot complications

| Category    | Robot | VATS  | <b>P value</b> |
|-------------|-------|-------|----------------|
| Minor       | 36.95 | 38.31 | NS             |
| Air Leak    | 25.42 | 23.73 | NS             |
| Atelectasis | 11.19 | 14.58 | NS             |

## VATS vs Open hospital course

| Category          | Open             | VATS             | P value |
|-------------------|------------------|------------------|---------|
| # patients        | 3487<br>(77%)    | 1045<br>(23%)    |         |
| Hospital<br>costs | <u>\$24,501</u>  | <u>\$21,397</u>  | <.0001  |
| LOS               | <b>9.01 days</b> | <b>6.46 days</b> | <.00001 |

#### Fast Tracking

#### Cultural Change

 Learn how to perform VATS
 Lobectomy



## VATS Lobectomy: Conclusions

Create Clinical Pathways
Get data to evaluate areas to improve